Search results for " QSPR"

showing 4 items of 4 documents

Polarity study of ionic liquids with the solvatochromic dye Nile Red: a QSPR approach using in silico VolSurf+ descriptors

2016

The in silico VolSurfþ descriptors, accounting for both cationic and anionic structural features of ionic liquids (ILs) were used to develop a Partial Least Squares (PLS) model able to establish a Quantitative Structure Property Relationship (QSPR) correlation with their solvatochromic dye Nile Red polarity. The PLS model allowed prediction of ENR values for 116 ILs providing an in silico ILs polarity database.

Quantitative structure–activity relationship010405 organic chemistryPolarity (physics)In silicoOrganic ChemistrySolvatochromismNile redIonic Liquids Polarity Nile Red QSPRSettore CHIM/06 - Chimica Organica010402 general chemistry01 natural sciencesBiochemistry0104 chemical sciencesQuantitative Structure Property Relationshipchemistry.chemical_compoundchemistryComputational chemistryDrug DiscoveryIonic liquidPartial least squares regressionOrganic chemistryTetrahedron
researchProduct

DNA minor groove binders: an overview on molecular modeling and QSAR approaches

2007

Molecular recognition of DNA by small molecules and proteins is a fundamental problem in structural biology and drug design. Understanding of recognition in both sequence-selective and sequence neutral ways at the level of successful prediction of binding modes and site selectivity will be instrumental for improvements in the design and synthesis of new molecules as potent and selective gene-regulatory drugs. Minor groove is the target of a large number of non-covalent binding agents. DNA binding with specific sequences, mostly AT, takes place by means of a combination of directed hydrogen bonding to base pair edges, van der Waals interactions with the minor groove walls and generalized ele…

Models MolecularPharmacologyDNA minor groove binders (mGBs) in silico techniques molecular modeling ab initio methods docking molecular dynamics simulations (MDS) QSAR QSPR.Molecular modelBase pairStereochemistryChemistryIn silicoOrganic ChemistryQuantitative Structure-Activity RelationshipDNAComputational biologyBiochemistrySmall moleculechemistry.chemical_compoundMolecular recognitionPharmaceutical PreparationsStructural biologyDocking (molecular)Drug DesignDrug DiscoveryNucleic Acid ConformationMolecular MedicineDNA
researchProduct

Design of new DNA-interactive agents by molecular docking and QSPR approach

2010

The design of new series of pyrrolo-pyrimidine derivatives, further annelated with a third heterocycle of different size, which also present several chain shape moieties of variable length and with different physico-chemical character, is reported. In this contribution we showed that the combination of docking-based and QSPR-based methods could lead to good models for ligand-DNA interaction prediction. By means of these computational approaches on 360 proposed inhibitors, we were able to select the most promising candidates as DNA-interactive drugs potentially endowed with antitumor activity.

Antitumor activitylcsh:QD241-441Quantitative structure–activity relationshipchemistry.chemical_compoundlcsh:Organic chemistryChemistryOrganic ChemistryDNA-interactive agents molecular docking QSPRComputational biologyVariable lengthCombinatorial chemistrySettore CHIM/08 - Chimica FarmaceuticaDNA
researchProduct

Prediction of ionic liquid's heat capacity by means of their in silico principal properties

2016

The in silico principal properties (PPs) of ionic liquids (ILs), derived by means of the VolSurf+ approach, were used to develop a Partial Least Squares (PLS) model able to find a quantitative correlation among IL descriptors (accounting for both cationic and anionic structural features) and heat capacity values, providing affordable predictions validated by experimental Cp measurements for an external set of ILs. In silico predictions allowed the selection of a limited number of structurally different ILs with similar Cp values, providing the possibility to select an optimal IL according to efficiency, as well as to environmental and economic sustainability. The present general procedure, …

Quantitative structure–activity relationshipHeat capacity010405 organic chemistryGeneral Chemical EngineeringIn silicoPrincipal (computer security)Chemistry (all)General ChemistrySettore CHIM/06 - Chimica Organica010402 general chemistry01 natural sciencesHeat capacityQuantitative correlation0104 chemical sciencesIonic liquidschemistry.chemical_compoundEconomic sustainabilitychemistryIonic liquids; QSPR; Heat capacityQSPRPartial least squares regressionIonic liquidChemical Engineering (all)Biological systemMathematics
researchProduct